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CROSS-EFFICIENCY EVALUATION IN DATA ENVELOPMENT 

ANALYSIS WITH STOCHASTIC DATA: A CHANCE- 

CONSTRAINED PROGRAMMING APPROACH 
  

Abstract. Cross-efficiency evaluation in Data envelopment analysis (DEA) 

has been accepted as a useful tool for performance evaluation and ranking of 

decision making units. However, the non-uniqueness of optimal weights in this 

evaluation has reduced the usefulness of this powerful method. As a result, it is 

recommended that secondary goals be introduced in cross-efficiency evaluation. 

Another issue in applying cross-efficiency DEA models is considering uncertainty 

in input and output variables. In this paper, the cross-efficiency model is modified 

to deal with stochastic data by applying chance-constrained approach. Some new 

stochastic DEA models and their associated deterministic versions are introduced. 

Furthermore, we discussed the existence of multiple weights in cross-efficiency 

method in the presence of stochastic data. As the result, we suggest some new 

secondary goals to better discriminate DMUs and obtain optimistic and pessimistic 

efficiency scores. Some numerical examples are used for illustration purposes. 

Keywords: Cross-efficiency method; Secondary goals; Stochastic cross-

efficiency; Multiple weights. 
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1. Introduction 
Data envelopment analysis (DEA) was introduced by Charnes et al. (1978). 

DEA belongs to non-parametric group of ways to assess the efficiency of decision-

making units (DMUs) with several inputs and outputs.Also Charneset 

al.(1978)presented a model for assessing DMUs called CCR model which is based 

on the assumption of constant returns to scale.Taking the DMU under evaluation, 

DEA maximizes the weight of all inputs over the weight of all outputs so that the 

ratio of all units cannot be greater than 1. All evaluations would result from the 

data of inputs and outputs(Li et al., 2015). Nowadays, the use of DEA technique 

has been rapidly expanding to evaluate different organizations and industries such 

as banking, energy, health care and etc. (Chen et al.,2016; Mardani et al.,2016).See 

(Emrouznejad et al., 2018) for more details.  

Cross-efficiency evaluation method was employed for the first time by 

Sexton et al.(1986) to address such concerns in DEA modeling by providing more 

flexible and realistic weighting approach which is called peer-evaluation method. 

Successful applications of cross-efficiency in DEA literature shows the advantage 

of applying this method in the applications. The idea of using peer-evaluation 

instead of self-evaluation in cross-efficiency method provided an extension to the 

theory of DEA by promoting the power of individual voices in the process peer-

evaluation,(Lim et al., 2014). This method is then improved in Doyle and Green 

(1994). Efficiency among DMUs with weight schemes was introduced by 

Anderson et al.(2002). 

In spite of merits of DEA cross-efficiency evaluation and its wide 

applications, it still has some short falls. For each DMU, the fact that DEA optimal 

weights are not unique may reduce the usefulness of cross-efficiency evaluation 

(Sexton et al. 1986). As Doyle and Green (1994) mentioned, multiple optimal 

weights acquired from classic DEA models can be used as secondary goals for 

better discrimination among DMUs. Evaluation of DEA cross-efficiency on the 

basis of Pareto improvement model was proposed by Wu et al. (2016). During 

recent years, the research concerning cross-efficiency evaluation has developed 

fast. Some of the significant studies in this field are as follows: Javier Alcaraz et al. 

(2013), Oral et al. (2015), Soltanifar et al.(2013), Li et al. (2018). 

In majority of conventional DEA models, a basic assumption is that the 

input and output data of decision-making units (DMUs) are known certainty. 

However, there are many cases where only uncertain data are available. Promising 

attempts have recently been made to address randomness in data either stochastic 

input or stochastic output in DEA model. Cooper et al.(2004) extended DEA model 

through the use of chance constrained programming formulations to treat 

congestion in DEA through dealing with all inputs and outputs with random 

variations. A key feature of his study is that stochastic variables are considered in 

DEA method and stochastic DEA model was formulated into a deterministic 

equivalence. As a result of this formulation, stochastic DEA can be solved with any 

business computer software, including any secondary programming required. The 

deterministic equivalents could then be transformed to quadratic programming 
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models, which are non-linear programs. A model must have enough flexibility to 

take account of the potential uncertainty in outputs and inputs and yield more 

compelling results. Therefore, an introduced stochastic model to the proposed 

model improved the outputs. Insignificant effort has been made for a stochastic 

chance constrained input and output in cross-efficiency model.  In this study, we 

examine cross-efficiency with stochastic input and output and discuss some of the 

secondary goals. Kuosmanen and Johnson (2010)improved similar semi-parametric 

DEA model. Kuosmanen and Kortelainen(2012)and Kuosmanen et al.(2015), and 

Kao and Liu (2009) used stochastic DEA technique to treat the stochastic data. 

Considering stochastic DEA technique in efficiency measurement gathered in 

(Khodabakhshi 2009; Hiroshi and Seiford 1999), Azadi and Saen(2011) suggested 

the chance-constrained DEA model that enables the stochastic approach in all data 

variables to specify the most suitable third-party reverse logistics to optimize the 

decision making process. 

In this papers, the topic of cross-efficiency DEA model was treated using 

multiple weights by considering stochastic data. Stochastic characterizations of 

cross-efficiency scores in DEA use of chance-constrained approach to deal with 

stochastic variation in constraints so as to change them to nonlinear 

counterparts.The developed algorithm is based on the basic CCR model by 

considering stochastic environment under assumptions that all inputs and outputs 

data are independent random variables and normally distributed. We considered 

presence of multiple optimal weights in the presence of stochastic data. Then, some 

new secondary goals are introduced for evaluating optimistic and pessimistic 

efficiency scores for any observed unit. 

The remainder of the current research is organized as follows: The 

conventional cross-efficiency model is briefly reviewed in the Section 2. In Section 

3, the stochastic version of the cross-efficiency DEA model is proposed for the first 

time. The existence of the multiple weights is examined and explained in Section 4. 

Section 5 dedicated to introduce new secondary goals for providing the optimistic 

and pessimistic models in the presence of stochastic data. An illustrative example 

is presented in Section 6. Section 7 discusses the conclusions. 

2. Cross-Efficiency Model 

Suppose a number of n decision making units (𝐷𝑀𝑈𝑗, 𝑗 = 1. … . 𝑛) each of 

which use multiple inputs to produce multiple outputs. Note that the ith input and rth 

output of each 𝐷𝑀𝑈𝑗 is mentioned as 𝑥𝑖𝑗(𝑖 = 1, … , 𝑚)and𝑦𝑟𝑗(𝑗 = 1, … , 𝑠), 

respectively. Cross-efficiency method is generally calculated in two phases. The 

first phase is carried out using of the CCR model of Charnes et al.(1978) which can 

be displayed in its output oriented form as follows (1): 

𝑚𝑎𝑥  𝐸𝑑𝑑 =
∑ 𝑢𝑟𝑑𝑦𝑟𝑑

𝑠
𝑟=1

∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1

 

    𝑠. 𝑡     𝐸𝑑𝑗 =
∑ 𝑢𝑟𝑑𝑦𝑟𝑗

𝑠
𝑟=1

∑ 𝑣𝑖𝑑𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1  𝑗 = 1,2, … , 𝑛      
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        𝑢𝑟𝑑 ≥ 0      𝑟 = 1, … , 𝑠,𝑣𝑖𝑑 ≥ 0      𝑖 = 1, … , 𝑚                                          (1)  

Where idv ( 𝑖 = 1. … . 𝑚)and rdu ( 𝑟 = 1. … . 𝑠) represent the ith input and rth output 

weights of the under assessment unit𝐷𝑀𝑈𝑑. 

In the second stage of the method, the cross-efficiency score of  𝐷𝑀𝑈𝑗, by 

considering the inputs and outputs optimal weights obtained for evaluation of 

𝐷𝑀𝑈𝑑 in model (1) is given by the following equation: 

𝐸𝑑𝑗 =
∑ 𝑢∗

𝑟𝑑𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣∗
𝑖𝑑𝑥𝑖𝑗

𝑚
𝑖=1

      𝑑, 𝑗 = 1, … , 𝑛                                                                    (2) 

Finally, for each  𝐷𝑀𝑈𝑗(𝑗 = 1,2, … , 𝑛)  the average of all 𝐸𝑑𝑗(𝑗 = 1,2,3, … , 𝑛) is 

computed as follows: 

𝐸�̅� =
1

𝑛
∑ 𝐸𝑑𝑗

𝑛

𝑑=1

(𝑗1,2, … , 𝑛)                                                                                          (3) 

jE denotes the cross-efficiency score for 𝐷𝑀𝑈𝑗(𝑗 = 1,2, … , 𝑛) . Note that each 

𝐸𝑑𝑗is called a cross-efficiency value and also the defined average in Equation (3) in 

the DEA literature is used for ranking DMUs. Generally speaking, cross-efficiency 

defined average in Equation (3), not the individual scores defined in Equation (2). 

As Model (1) is non-linear thus considering Charnes and Cooper’s 

transformation (1984), we will arrive to the following linear model: 

𝑀𝑎𝑥  𝐸𝑑𝑑 = ∑ 𝑢𝑟𝑑𝑦𝑟𝑑

𝑠

𝑟=1

 

𝑠. 𝑡.    ∑ 𝑣𝑖𝑑𝑥𝑖𝑑 = 1  

𝑚

𝑖=1

 

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 −

𝑠

𝑟=1

∑ 𝑣𝑖𝑑𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0      𝑗 = 1, … , 𝑛 

       𝑢𝑟𝑑 , 𝑣𝑖𝑑 ≥ 0         (4) 

Note that cross-efficiency scores mentioned from (3), is the average of 𝐸𝑑𝑗 and is 

not greater than one. In accordance to Doyle and Green (1994), here we elaborate 

on the notion of cross-efficiency according to the matrix mentioned in Table 1. 

𝐸𝑑𝑗 Is the cross-efficiency value of each 𝐷𝑀𝑈𝑗(𝑗 = 1,2 … , 𝑛)  based on a set of 

optimal weights obtained for DEA model while 𝐷𝑀𝑈𝑑is being assessed (self-

assessing). 
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In accordance to the cross efficiency method, while 𝐷𝑀𝑈𝑑is being 

evaluated, the model searches feasible weights for the best efficiency score for this 

unit. Note that  𝐸𝑑𝑑 (in the leading diagonal) is the average of the efficiency scores 

of each DMU j while given the optimal weights of 𝐷𝑀𝑈𝑑. Here 𝐸𝑑𝑑 is mentioned 

by𝐸�̅�. We argue that in Doyle and Green (1994), the efficiency score for 𝐷𝑀𝑈𝑑is 

not taken into account as part of the average. Clearly, 𝐸𝑑𝑗 (𝑑 ≠ 𝑗) and 𝐸�̅�are not 

unique, as a result of the ever-present multiple optimal DEA weights in this model 

(4). For example, as multiple optimal weights can occur in DEA models, the cross-

efficiency concept may be judged as an unreliable method. Bear in mind that the 

above discussion output orientation and thus considering the same way with the 

output-oriented model, it is also possible to calculate the cross-efficiency as well. 

 

Table 1:Cross-efficiency matrix 

DMU 𝑫𝑴𝑼𝟏 𝑫𝑴𝑼𝟐 … 𝑫𝑴𝑼𝒏 Average 

𝑫𝑴𝑼𝟏 E11 E12 ... E1𝑛 1

𝑛
∑ E1𝑜

𝑛

𝑜=1

 

𝑫𝑴𝑼𝟐 E21 E22 ... E2𝑛 1

𝑛
∑ E2𝑜

𝑛

𝑜=1

 

… … … ... … … 

𝑫𝑴𝑼𝒏 𝐸𝑛1 E𝑛2 ... E𝑛𝑛 1

𝑛
∑ E𝑛𝑜

𝑛

𝑜=1

 

3. Stochastic Cross-Efficiency  
In the presence of stochastic data, a DMU which is evaluated to perform 

efficiently may turn to be inefficient if such stochastic variations are taken into 

consideration. For better analyzing the real world problems (than what have been 

carried out in the standard DEA models), A number of researchers introduced 

stochastic input and output into the DEA model. (See Cooper et al. 2004;Cooper et 

al., 2002;Khodabakhshi et al., 2009)among others.  

Following the notations introduced by Cooper et al. (2004), we use �̃�𝑗 =

(�̃�1𝑗, … , �̃�𝑚𝑗)𝑡 and �̃�𝑗 = (�̃�1𝑗, … , �̃�𝑠𝑗)𝑡 to represent random input and output 

vectors, respectively. It is assumed that inputs and outputs to be random variables 

with a multivariate normal distribution. The stochastic version of CCR 

envelopment model is formulated as follow; Cooper et al. (2004): 

max 𝜑 = ∑ 𝑢𝑟𝑑

𝑠

𝑟=1

�̃�𝑟𝑑 

   𝑠. 𝑡.       ∑ 𝑣𝑖𝑑

𝑠

𝑟=1

�̃�𝑖𝑑 = 1                       
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              𝑝 {∑ 𝑢𝑟𝑑

𝑠

𝑟=1

�̃�𝑟𝑗 − ∑ 𝑣𝑖𝑑

𝑚

𝑖=1

�̃�𝑖𝑗 ≤ 0} ≥ 1 − 𝛼,    𝑗 = 1, … , 𝑛 

              𝑢𝑟𝑑 , 𝑣𝑖𝑑 ≥ 0,        𝑟 = 1, … , 𝑠,
𝑖 = 1, … , 𝑚                                                                                          (5) 

Where  𝛼 is a previously specified value between 0 and 1, which indicates the 

significance level of constraints and p shows the probability and “~” presents the 

data as random variables with a normal distribution. 

The chance constrained Model (5) can be converted into its equivalent 

deterministic counterpart as follows; (see the appendix): 

max 𝜑 = ∑ 𝑢𝑟𝑑

𝑠

𝑟=1

𝑦𝑟𝑑 

𝑠. 𝑡.     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑

𝑚

𝑖=1

= 1 

∑ 𝑢𝑟𝑑

𝑠

𝑟=1

𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 −

𝑚

𝑖=1

𝛷−1(𝛼)𝛿𝑗 ≤ 0, ∀𝑗 

           𝑢𝑟𝑑, 𝑣𝑖𝑑 ≥ 0           𝑟 = 1, … , 𝑠, 𝑖 = 1, … , 𝑚 

𝛿𝑗   

= ∑ ∑ 𝑢𝑟𝑢𝑡

𝑠

𝑡=1

𝑠

𝑟=1

𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑡𝑗) + ∑ ∑ 𝑣𝑖𝑣𝑙

𝑚

𝑙=1

𝑚

𝑖=1

𝐶𝑜𝑣(�̃�𝑖𝑗 , �̃�𝑙𝑗)   

+ 2 ∑ ∑ 𝑢𝑟𝑣𝑖𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑖𝑗)

𝑚

𝑖=1

𝑠

𝑟=1

, 𝑗, 1, … , 𝑛                                                                                     (6) 

Here,𝛷, the cumulative distribution is function of a standard normalrandom 

variable and 𝛷−1is its inverse.𝐶𝑜𝑣(�̃�𝑖𝑗 , �̃�𝑙𝑗) And 𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑡𝑗) refer to variance of 

inputs and outputs, respectively. (See the Appendix) Now, based on (6), we can 

compute stochastic cross-efficiency scores. Note that if 𝛼 = 0.5. is a predetermined 

level of probability, then 𝛷−1(𝛼) = 0 and optimal value for 𝑢𝑟
∗ , 𝑣𝑖

∗ in the stochastic 

version can be derived from solving the CCR model in which the mean values of 

inputs and outputs are employed (Wu et al. 2012). 

Definition of Stochastic Efficiency: 

A DMU assessed by Model (5) is stochastically efficient if and only if the 

following conditions are both satisfied, (Cooper et al. 2004): 

(𝑖)𝜑0
∗ = 1 

(ii) 𝑢∗, 𝑣∗ ≥ 0For all optimal solutions. 

Example1. Consider six DMUs, each of them has two inputs and two outputs as 

reported in Table 2. The computed CCR scores, the matrix of cross-efficiency and 

a set of optimal weights are presented in Table 2. In Table 3 and 4, the 

deterministic data listed in Table 2 are reported stochastically with variance of 0.01 

and confidence interval of 95%; i.e. 𝛼 = 0.05 is used in (6). At first, the data are 
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selected stochastically (Table 3) and then according to the mentioned models, the 

cross-efficiency scores are presented in Table 4. 

Table 2. Cross-efficiency scores with deterministic data for example 1 

Data  Cross -Efficiency  Scores Optimal Weights 

𝒙𝟏 𝑥2 𝑦1 𝑦2 DMU (1) (2) (3) (4) (5) (6) 𝑣1
∗ 𝑣2

∗ 𝑢1
∗ 𝑢2

∗  

1.5 0.2 1.4 0.35 (1) 1 0.42 1 0.49 0.51 0.47 0.52 1.12 0.68 0.12 

4 0.7 1.4 2.1 (2) 1 1 0.83 1 0.98 0.87 0.14 0.64 0.14 0.38 

3.2 1.2 4.2 1.05 (3) 0.71 0.34 1 0.53 0.52 0.4 0.31 0 0.22 0.06 

5.2 2 2.8 4.2 (4) 0.71 0.65 1 1 0.92 0.65 0.19 0 0.1 0.17 

3.5 1.2 1.9 2.5 (5) 1 1 0.83 1 0.97 0.87 0.11 0.51 0.11 0.3 

3.2 0.7 1.4 1.5 (6) 1 1 0.83 1 0.98 0.87 0.15 0.72 0.16 0.43 

    𝑬𝒋
̅̅ ̅ 0.9033 0.735 0.915 0.8367 0.8133 0.688     

 

Table 3. Stochastic data, 𝜶 = 𝟎. 𝟎𝟓 

Data 

𝒙𝟏~ 

𝑵(𝝁. . 𝟎𝟎𝟏) 

𝒙𝟐~ 

𝑵(𝝁. . 𝟎𝟎𝟏) 

𝒚𝟏~ 

𝑵(𝝁. . 𝟎𝟎𝟏) 

𝒚𝟐~ 

𝑵(𝝁. . 𝟎𝟎𝟏) 
1.5 0.2 1.4 0.35 

4 0.7 1.4 2.1 

3.2 1.2 4.2 1.05 

5.2 2 2.8 4.2 

3.5 1.2 1.9 2.5 

3.2 0.7 1.4 1.5 

 

Table 4. Stochastic cross efficiency scores and optimal weights 

 Cross-Efficiency  Scores Optimal Weights 

DMU (1) (2) (3) (4) (5) (6) 𝒗𝟏
∗  𝒗𝟐

∗  𝒖𝟏
∗  𝒖𝟐

∗  

(1) 0.91 0.33 1.00 0.42 0.44 0.39 0.57 0.70 0.65 0.00 

(2) 0.53 1.00 0.42 1.00 0.98 0.84 0.13 0.70 0.00 0.50 

(3) 0.73 0.27 1.00 0.42 0.42 0.34 0.31 0.00 0.24 0.00 

(4) 0.29 0.66 0.41 1.00 0.90 0.59 0.19 0.00 0.00 0.24 

(5) 1.00 1.00 0.93 1.00 1.00 0.92 0.10 0.54 0.14 0.30 

(6) 1.00 1.00 0.96 1.00 1.00 0.90 0.16 0.70 0.21 0.41 

𝑬�̃� 0.74 0.71 0.79 0.81 0.79 0.66    

Based on the results, the following ranking status in cross efficiency method is 

achieved for these data set: 

 Deterministic data:𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈2 ≻ 𝐷𝑀𝑈6 

 Stochastic data:𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈3 = 𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈2 ≻ 𝐷𝑀𝑈6 
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Note that by allowing only 5% of unsatisfied constraints for model (4), the 

provided rank position is changed for some of the units. For example, 𝐷𝑀𝑈4 

achieved the best rank in stochastic case, while it was in the third place of 

performance in deterministic cross-efficiency evaluation. Only for 𝐷𝑀𝑈2 and 

𝐷𝑀𝑈6 (two out of six), the stochastic rank is the same as deterministic rank. In the 

other word, for these units, we are almost sure that they are performing weak in 

comparison with the other units. For a complete analysis in ranking units based on 

stochastic cross-efficiency scores, different risk levels (i.e. different values for𝛼) 

should be used. 

This simple example shows that if inputs and outputs are available as stochastic 

data, using stochastic cross-efficiency method provides useful information on 

relative performance of the units.  

4. Multiple Weights in Stochastic Cross-Efficiency Evaluation 

Due to occurrence of optimal multiple weights, the acquired cross-

efficiency scores are less likely to be unique. This is a significant weakness in the 

cross-efficiency model. To address this problem, Sexton et al.(1986)introduced the 

idea of secondary goals in the presence of the non- uniqueness of optimal weights 

in cross-efficiencies that was later developed by Doyle and Green (1994). 

 When the data are considered to be deterministic in cross-efficiency 

method, there may exist optimal multiple weights. All the obtained weights affect 

the cross-efficiency scores in (6). In this section, for the first time, we discussed the 

possibility of multiple optimal weights in the presence of stochastic. Moreover, we 

tried to verify if both stochastic data and optimal multiple weights affect the further 

definitions of cross efficiencies.  

To answer this question, we chose a particular DMU from the example 1. 

Now consider the following deterministic optimization model: 

𝑚𝑎𝑥(min)     𝑢1 

𝑠. 𝑡.                  
∑ 𝑢𝑟𝑑

𝑠
𝑟=1 𝑦𝑟𝑑

∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1

= 𝐸𝑑𝑑 

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗

∑ 𝑣𝑖𝑑𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1,       𝑗 = 1, … , 𝑛 

      𝑢𝑟𝑑 , 𝑣𝑖𝑑 ≥ 0, 𝑟 = 1, … , 𝑠, 𝑖1, … , 𝑚                                                                             (7) 

The objective function of this model provides the feasible range for optimal 

weights of𝑢1; as the first output weight. The first equality constraint guarantees 

that CCR efficiency score of the under evaluation unit, i.e.𝐷𝑀𝑈𝑑, unchanged. The 

other e=inequality constraints restrict the feasible region of input, output weights.  

The stochastic counterpart of this model in general form is as follows: 

𝑚𝑎𝑥(minn)       𝑢1𝑑 
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   𝑠. 𝑡         ∑ 𝑢𝑟𝑑

𝑠

𝑟=1

𝑦𝑟𝑑 − 𝐸𝑑𝑑 ∑ 𝑣𝑖𝑑𝑥𝑖𝑑

𝑚

𝑖=1

= 0 

∑ 𝑢𝑟𝑑

𝑠

𝑟=1

𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 −

𝑚

𝑖=1

𝛷−1(𝛼)𝛿𝑗 ≤ 0, ∀𝑗                         

   𝑢𝑟𝑑 , 𝑣𝑖𝑑 ≥ 0           𝑟 = 1, … , 𝑠, 𝑖 = 1, … , 𝑚 

𝛿𝑗 = ∑ ∑ 𝑢𝑟𝑢𝑘

𝑠

𝑘=1

𝑠

𝑟=1

𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑘𝑗) + ∑ ∑ 𝑣𝑖𝑣𝑙

𝑚

𝑙=1

𝑚

𝑖=1

𝐶𝑜𝑣(�̃�𝑖𝑗, �̃�𝑙𝑗) 

+2 ∑ ∑ 𝑢𝑟𝑣𝑖𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑖𝑗)

𝑚

𝑖=1

𝑠

𝑟=1

, 𝑗 = 1, … , 𝑛                                                           (8) 

Consider the example1 mentioned in Section 3 and the associated Model 

(6). The achieved optimal inputs and outputs weights for 𝐷𝑀𝑈2 are 
(𝑣1

∗, 𝑣2
∗) =(0.13, 0.7) and (𝑢1

∗ , 𝑢2
∗) =(0, 0.5), respectively. Consider Table 5, this 

unit has the same efficiency score considering Model (3.2) but it has different input 

and output weights; (𝑣1
∗, 𝑣2

∗) =( 0, 1.43) and (𝑢1
∗ , 𝑢2

∗) =(0 , 0.48). ). In a similar 

manner, consider the computed result for 𝐷𝑀𝑈6 by applying models (6) and (7) in 

Table 4. The input and output weights are (𝑣1
∗, 𝑣2

∗) =(0.16, 0.7) and 
(𝑢1

∗ , 𝑢2
∗) =(0.21, 0.41). In Table 5, the achieved optimal inputs and outputs weights 

for𝐷𝑀𝑈6 are (𝑣1
∗, 𝑣2

∗) =(0.14, 0.77) and (𝑢1
∗ , 𝑢2

∗) =(0.15, 0.46), respectively. 

According to these results, the computed cross-efficiency score is ill-defined, even 

in the presence of stochastic data. As an instance, 𝐷𝑀𝑈2 achieved two different 

cross-efficiency scores 0.71 and 0.87 in Table 4 and Table 5, respectively.  

These examples clearly demonstrate the issue of existence multiple optimal 

weights for optimization model (6) in computing cross-efficiency scores. This issue 

has persuaded the researchers to introduce secondary goals to choose between 

optimal weights calculate cross-efficiency scores in discriminate data case. 

Table 5. Multiple optimal weights and cross-efficiency 

 

 

 

 

 

 

 

 

 

 

 Cross-Efficiency  Scores Optimal Weights 

DMU (1) (2) (3) (4) (5) (6) 𝒗𝟏
∗  𝒗𝟐

∗  𝒖𝟏
∗  𝒖𝟐

∗  

(1) 0.91 1.08 0.45 0.76 0.77 0.81 [0,0.05] [0,5] [0,0.23] [0,1.67] 

(2) 0.58 1 0.29 0.7 0.69 0.71 [0,0.05] [0,1.43] [0,0.05] [0,0.48] 

(3) 0.71 0.68 1 1 0.95 0.67 [0,0.31] [0,0.05] [0,0.17] [0,0.29] 

(4) 0.29 0.65 0.41 1 0.88 0.58 [0,0.19] [0,0.05] [0,0.05] [0,0.24] 

(5) 0.9 1.05 0.72 1.03 1 0.89 [0,0.1] [0,0.54] [0,0.08] [0,0.34] 

(6) 0.99 1.05 0.79 1.02 1 0.9 [0,0.14] [0,0.77] [0,0.15] [0,0.46] 

𝑬�̃� 0.73 0.92 0.61 0.92 0.88 0.76     
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5. Optimistic and Pessimistic Models as Secondary Goals by Considering  

    Stochastic Data 

Due to existence of multiple optimal weights in cross-efficiency evaluation, cross-

efficiency score may be ill-defined. Thus, as Doyle and Green (1994) claimed, a 

secondary goal could be taken into account to choose between alternative optimal 

weights to remove this deficiency. Doyle and Green (1994) proposed aggressive 

and benevolent secondary goals, which respectively minimize and maximize the 

efficiency of the virtual DMU while it is being compared to under evaluation 

observed DMU. The most prevalent secondary goal is utilizing the aggressive 

model which minimizes the efficiency score and chooses weights in a way that 

resulted in identification of the minimum efficiency of the aggregate DMU 

comprised of the remaining n-1 DMUs.   The benevolent model has the same 

structure as aggressive model but it attempts to maximize the efficiency of the 

composite DMU.   

In this section, aggressive and benevolent secondary goals in cross-

efficiency evaluation are extended for dealing with stochastic data. Therefore, we 

presented the results of considering the first example using either the aggressive 

method or the benevolent one with stochastic data. The proved example is then 

examined with the new proposed models.  

In the aggressive model, the unit under evaluation minimizes aggregated 

cross-efficiencies of other units when it has the best weight as follows: 

𝑚𝑖𝑛(𝑛 − 1) 𝐴𝑘 = ∑ �̃�𝑘𝑗 =

𝑗≠𝑘

∑
∑ 𝑢𝑟𝑘�̃�𝑟𝑗𝑟

∑ 𝑣𝑖𝑘�̃�𝑖𝑗𝑖
𝑗≠𝑘

                                                        (9)           

Taking the above expression as an objective function, the associated optimization 

model will a non-linear fractional, which cannot be easily solved. Instead of 

minimizing the fractional aggregate of cross-efficiency, Sexton et al.(1986) 

introduced a surrogate function, which subtracts the numerator from the 

denominator and minimizes the achieved function. The new aggressive model 

could be stated as follows: 

𝑚𝑖𝑛    𝐵𝑘 = ∑(∑ 𝑢𝑟𝑘�̃�𝑟𝑗 − ∑ 𝑣𝑖𝑘�̃�𝑗)

𝑖𝑟𝑗≠𝑘

 

           = ∑(𝑢𝑟𝑘 ∑ �̃�𝑟𝑗) − (∑ 𝑣𝑖𝑗 ∑ �̃�𝑖𝑗

𝑗≠𝑘

)

𝑖𝑗≠𝑘𝑟

                                                    (10) 

Here, ∑ �̃�𝑟𝑗𝑗≠𝑘  is the sum of stochastic outputs in which 𝐷𝑀𝑈𝑘 is 

excluded.Similarly, ∑ �̃�𝑖𝑗𝑗≠𝑘  represents the combination of stochastic inputs of all 

DMUs except for𝐷𝑀𝑈𝑘. In this formulation, the goal is to minimize the cross-

efficiency of DMUs as explained above. Note that the formulation in the 

benevolent form could be stated by maximizing this function.  

So, the new proposed cross-efficiency evaluation with stochastic data has two 

phases: 
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(i) The optimization model (4) is solved for every observed unit. Based on 

the provided solutions 𝐸𝑘𝑘values are calculated by applying (2) for𝑘 =
1, … , 𝑛.  

(ii) 𝐵𝑘As the aggressive secondary goal is achieved via solving the 

nonlinear programming model.  

min ∑ 𝑢𝑟𝑑 ∑ 𝑦𝑟𝑗

𝑛

𝑗=1.𝑗≠𝑑

𝑠

𝑟=1

 

  𝑠. 𝑡.       ∑ 𝑣𝑖𝑑 ∑ 𝑥𝑖𝑗

𝑛

𝑗=1.𝑗≠𝑑

= 1  

𝑚

𝑖=1

 

∑ 𝑢𝑟𝑑𝑦𝑟𝑑 −

𝑠

𝑟=1

𝐸𝑑𝑑
∗ ∑ 𝑣𝑖𝑑𝑥𝑖𝑑

𝑚

𝑖=1

= 0 

∑ 𝑢𝑟𝑑

𝑠

𝑟=1

𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 −

𝑚

𝑖=1

𝛷−1(𝛼)𝛿𝑗 ≤ 0, ∀𝑗 

    𝑢𝑟𝑑 , 𝑣𝑖𝑑 ≥ 𝜀           𝑟 = 1, … , 𝑠, 𝑖 = 1, … , 𝑚 

𝛿𝑗 = ∑ ∑ 𝑢𝑟𝑢𝑘

𝑠

𝑘=1

𝑠

𝑟=1

𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑘𝑗) + ∑ ∑ 𝑣𝑖𝑣𝑙

𝑚

𝑙=1

𝑚

𝑖=1

𝐶𝑜𝑣(�̃�𝑖𝑗 , �̃�𝑙𝑗) 

+2 ∑ ∑ 𝑢𝑟𝑣𝑖𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑖𝑗)

𝑚

𝑖=1

𝑠

𝑟=1

, 𝑗 = 1, … , 𝑛                                                                         (11) 

Where 𝜀 > 0 is a non-Archimedean constant to eschew zero weights and 𝐸𝑑𝑑
∗ is the 

CCR efficiency of 𝐷𝑀𝑈𝑑 derived from the stochastic CCR model computed in 

phase (I).  

Note that the following model could be considered in the phase (ii) as the 

stochastic benevolent version of cross-efficiency method 

max ∑ 𝑢𝑟𝑑

𝑠

𝑟=1

∑ 𝑦𝑟𝑗

𝑛

𝑗=1.𝑗≠𝑑

 

          𝑠. 𝑡        ∑ 𝑣𝑖𝑑 ∑ 𝑥𝑖𝑗

𝑛

𝑗=1.𝑗≠𝑑

= 1  

𝑚

𝑖=1

 

∑ 𝑢𝑟𝑑𝑦𝑟𝑑 −

𝑠

𝑟=1

𝐸𝑑𝑑
∗ ∑ 𝑣𝑖𝑑𝑥𝑖𝑑

𝑚

𝑖=1

= 0 
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∑ 𝑢𝑟𝑑

𝑠

𝑟=1

𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 −

𝑚

𝑖=1

𝛷−1(𝛼)𝛿𝑗 ≤ 0, ∀𝑗 

    𝑢𝑟𝑑 , 𝑣𝑖𝑑 ≥ 𝜀           𝑟 = 1, … , 𝑠, 𝑖 = 1, … , 𝑚 

𝛿𝑗 = ∑ ∑ 𝑢𝑟𝑢𝑘

𝑠

𝑘=1

𝑠

𝑟=1

𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑘𝑗) + ∑ ∑ 𝑣𝑖𝑣𝑙

𝑚

𝑙=1

𝑚

𝑖=1

𝐶𝑜𝑣(�̃�𝑖𝑗 , �̃�𝑙𝑗) 

+2 ∑ ∑ 𝑢𝑟𝑣𝑖𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑖𝑗)

𝑚

𝑖=1

𝑠

𝑟=1

, 𝑗 = 1, … , 𝑛                                                                         (12) 

Table 6.Aggressive cross-efficiency with stochastic data 

 Cross-Efficiency Scores 

 

Optimal Weights 

DMU (1) (2) (3) (4) (5) (6) 𝒗𝟏
∗  𝒗𝟐

∗  𝒖𝟏
∗  𝒖𝟐

∗  

(1) 0.91 0.34 0.79 0.35 0.37 0.37 0.44 1.69 0.64 0.05 

(2) 0.74 1 0.44 0.79 0.78 0.76 0.05 1.14 0.05 0.44 

(3) 0.74 0.35 1 0.52 0.51 0.4 0.29 0.05 0.23 0.05 

(4) 0.52 0.69 0.69 1 0.91 0.64 0.17 0.05 0.05 0.2 

(5) 0.9 1 0.72 1 1 0.89 0.1 0.54 0.08 0.34 

(6) 0.99 1.06 0.79 1 1 0.9 0.14 0.77 0.15 0.46 

𝑬�̃� 0.8 0.74 0.74 0.78 0.76 0.66     

Table 7. Benevolent cross-efficiency with stochastic data 

 Cross-Efficiency Scores 

 

Optimal Weights 

DMU (1) (2) (3) (4) (5) (6) 𝒗𝟏
∗  𝒗𝟐

∗  𝒖𝟏
∗  𝒖𝟐

∗  

(1) 0.91 1.08 0.48 0.79 0.79 0.82 0.05 4.6 0.24 1.62 

(2) 1.01 1 0.99 1 1 0.90 0.15 0.59 0.19 0.35 

(3) 1.01 0.99 1 1 1 0..89 0.13 0.5 0.16 0.29 

(4) 1.02 0.93 1 1 0.98 0.85 0.09 0.28 0.11 0.17 

(5) 1.01 1 0.92 1 1 0.92 0.09 0.56 0.14 0.29 

(6) 1.01 1 0.98 1 1 0.9 0.16 0.7 0.21 0.4 

𝑬�̃� 0.99 1 0.89 0.96 0.96 0.89     

 

Tables 6 and 7 shows the minimum and maximum efficiency scores while 

stochastic data are considered. Note that in this evaluation 𝜀 =  0.05 is used 

considering
1DMU as an example, we found that the cross-efficiency of 

1DMU  is 

0.99 (0.72) in the maximum (minimum) mode. These calculations mean that the 
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computed efficiency has changed between 0.72 and 0.99, so it is possible to use an 

efficiency interval [0.72. 0.99] for cross-efficiency score of this unit.  

6. Illustrative application 

To demonstrate the applicability of the suggested approach, we applied a 

data set including 13 open coastal Chinese cities and five Chinese special economic 

zones in 1989 which is taken from Zhu (2009). The data set includes three outputs 

and two inputs.  

Inputs:  

 Investment in fixed assets by state-owned enterprises (
1x ) 

 Foreign funds (
2x ) 

Outputs:  

 Total industrial output value (
1y ) 

 Total value of retail sales (
2y ) 

 Handling capacity of coastal ports (
3y )  

In this example, it is assumed that every index is a stochastic variable with 

normal distributions. The mean values of these variables are shown in the columns 

(2-6) of Table 8.  

Inputs and outputs follow random data with a normal distribution and mean values 

are as 

follows:𝑥1~𝑁(𝜇, 10), 𝑥2~𝑁(𝜇, 15),𝑦1~𝑁(𝜇, 1), 𝑦2~𝑁(𝜇, 10),𝑦3~𝑁(𝜇, 6)and a 

confidence interval of 95%. To compute the results of models (11, 12), alpha was 

chosen to be at𝛼 = 0.05. Hence 𝛷−1(𝛼) = 1.645.a computational issue is 

encountered in solving the above benevolent and aggressive models while 

calculating the cross efficiency scores. For both models, with deterministic data, 

indexes are shown in table 8 with𝐸�̅�
𝒎𝒂𝒙

and𝐸�̅�
𝒎𝒊𝒏

and with stochastic data are 

shown in Table 8 with�̅�𝑗
̃ 𝑚𝑎𝑥

and �̅�𝑗
̃ 𝑚𝑖𝑛

. 

Considering DMU17, the benevolent (aggressive) models of the deterministic data 

(Table 7) are 0.282 (0.23), respectively. Furthermore, the benevolent (aggressive) 

models corresponding to the stochastic data (Table 8) are 0.317 (0.222) for the 

same DMUs, respectively.This means that the maximum (minimum) likely cross 

efficiency scores of this DMU at the significance level 𝛼 = 0.05are in 

interval[0.222,0.317] while with deterministic data, their values fall in interval 

[0.23, 0.282]. Now, take 
1DMU  and DMU15 into consideration. The maximum 

cross efficiency of 
1DMU with stochastic data is 0.439 and that of 

15DMU  is 

0.19. The minimum cross efficiency scores of these two DMUs with stochastic data 

are 0.368 and 0.132, respectively, for which we can consider an efficiency interval. 

As an instance, for
1DMU , the efficiency interval of [0.368, 0.439] can be 

considered and for
15DMU , the interval [0.132, 0.19] is possible. In this way, an 

important issue is the presence of multiple weights while stochastic data are being 
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considered. Consider the same DMUs (
1DMU  and DMU15) for the definite state 

in Table 8. The benevolent cross efficiency of 
1DMU with deterministic data is 

0.446 and that of 
15DMU  is 0.166. The aggressive cross efficiencies of these two 

DMUs with stochastic data are 0.378 and 0.139, respectively, for which we can 

consider an efficiency interval. As an instance, the efficiency intervals of [0.378, 

0.446] and [0.139, 0.166] can be considered for 
1DMU and

15DMU , respectively.  

 

Table 8. Cross-efficiency score in Chinese cities with real data and random 

data and benevolent mode and Aggressive state 
 𝑫𝒂𝒕𝒂 deterministic stochastic 

 

DMU 𝒙𝟏 𝒙𝟐 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝑬𝒋
̅̅ ̅𝒎𝒊𝒏

 𝑬𝒋
̅̅ ̅𝒎𝒂𝒙

 �̅�𝒋
̃𝒎𝒊𝒏

 �̅�𝒋
̃𝒎𝒂𝒙

 

(1) 2874.800 16738.000 160.890 80800.000 5092.000 0.446 0.378 0.368 0.439 

(2) 946.300 691.000 21.140 18172.000 6563.000 1 0.916 0.913 1 

(3) 6854.000 43024.000 375.250 144530.000 2437.000 0.244 0.208 0.208 0.247 

(4) 2305.100 10815.000 176.680 70318.000 3145.000 0.453 0.388 0.386 0.457 

(5) 1010.300 2099.000 102.120 55419.000 1225.000 0.605 0.558 0.567 0.614 

(6) 282.300 757.000 59.170 27422.000 246.000 0.973 0.887 0.891 0.977 

(7) 17478.600 116900.000 1029.090 351390.000 14604.000 0.305 0.256 0.255 0.309 

(8) 661.800 2024.000 30.070 23550.000 1126.000 0.454 0.401 0.388 0.441 

(9) 1544.200 3218.000 160.580 59406.000 2230.000 0.57 0.518 0.538 0.597 

(10) 428.400 574.000 53.690 47504.000 430.000 0.884 0.874 0.8606 0.8605 

(11) 6228.100 29842.000 258.090 151356.000 4649.000 0.279 0.242 0.241 0.273 

(12) 697.700 3394.000 38.020 45336.000 1555.000 0.656 0.574 0.532 0.613 

(13) 106.400 367.000 7.070 8236.000 121.000 0.606 0.55 0.518 0.566 

(14) 4539.300 45809.000 116.460 56135.000 956.000 0.129 0.108 0.105 0.171 

(15) 957.800 16947.000 29.200 17554.000 231.000 0.166 0.139 0.132 0.19 

(16) 1209.200 15741.000 65.360 62341.000 618.000 0.386 0.334 0.308 0.431 

(17) 972.400 23822.000 54.520 25203.000 513.000 0.282 0.23 0.222 0.317 

(18) 2192.000 10943.000 25.240 40267.000 895.000 0.151 0.134 0.123 0.184 

Based on the results, the following ranking status in benevolent cross efficiency 

method is achieved for these data set: 
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 Deterministic data: 𝐷𝑀𝑈2 ≻ 𝐷𝑀𝑈6 ≻ 𝐷𝑀𝑈10 ≻ 𝐷𝑀𝑈12 ≻ 𝐷𝑀𝑈13 ≻
𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈9 ≻ 𝐷𝑀𝑈8 ≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈16 ≻ 𝐷𝑀𝑈7 ≻
𝐷𝑀𝑈17 ≻ 𝐷𝑀𝑈11 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈15 ≻ 𝐷𝑀𝑈18 ≻ 𝐷𝑀𝑈14 

 Stochastic data: 𝐷𝑀𝑈2 ≻ 𝐷𝑀𝑈6 ≻ 𝐷𝑀𝑈10 ≻ 𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈12 ≻
𝐷𝑀𝑈9 ≻ 𝐷𝑀𝑈13 ≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈8 ≻ 𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈16 ≻ 𝐷𝑀𝑈17 ≻
𝐷𝑀𝑈7 ≻ 𝐷𝑀𝑈11 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈15 ≻ 𝐷𝑀𝑈18 ≻ 𝐷𝑀𝑈14 

Note that by allowing only 5% of the unsatisfied constraints for model (12), the 

provided rank position changed for some of the units. For example, 𝐷𝑀𝑈5 

achieved the 4th rank in stochastic case, while it was in the sixth place of 

performance in deterministic cross-efficiency evaluation. Only for 

𝐷𝑀𝑈1, 𝐷𝑀𝑈2, 𝐷𝑀𝑈3, 𝐷𝑀𝑈10, 𝐷𝑀𝑈11, 𝐷𝑀𝑈14, 𝐷𝑀𝑈15, 𝐷𝑀𝑈16, and 𝐷𝑀𝑈18 (two 

out of six), the stochastic rank is the same as deterministic rank. In other words, for 

these units, we are almost sure that they have a weak performance in comparison 

with other units. 

Approximately 80% of the cross-efficiency interval obtained in exact data mode, 

are included in the computed interval for the case of stochastic data. Here 𝛼, as a 

pre-specified acceptable risk, may also be employed for planning purposes. 

Therefore, it seems that the values of stochastic aggressive and benevolent cross 

efficiencies provide far better and more accurate prediction of efficiency status of 

the production systems in this sample.  

7. Conclusion 

This paper develops a new approach in DEA framework for calculating 

cross-efficiency scores in the presence of multiple optimal weights and stochastic 

inputs/outputs data. Estimating cross-efficiency scores as well as introducing some 

secondary goals are considered using the chance-constrained programming 

approach. Some new chance-constrained DEA models are suggested and the 

associated deterministic equivalent models are then introduced for computation 

purpose. It is shown that the issue of existence multiple optimal weights is still 

happens when using stochastic data in cross efficiency evaluation. New introduced 

stochastic version of benevolent and aggressive secondary goals is then used in 

cross efficiency evaluation of some numerical examples. The results demonstrate 

that the new stochastic cross-efficiency method provides more reliable cross-

efficiency scores for ranking production units.  Further research could be 

conducted in dealing with the stochastic data in DEA framework, especially in 

providing some new cross-efficiency secondary goals. 

Appendix 

Assume all the variables have normal distribution with a known mean and 

variance (Rao 2009). 

Thus, the objective function also has a normal distribution with a mentioned mean 

and variance as follows: 
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𝑓̅ = 𝜇𝑓 = ∑ 𝑢𝑟𝑑 �̃�𝑟𝑑    , 𝑉𝑎𝑟(𝜇𝑓) = 𝑌𝑇𝑉𝑌   

Note that V represents the variance–covariance matrix of �̃�𝑛s as: 

𝑉 = [

𝑉𝑎𝑟(�̃�1) 𝐶𝑜𝑣(�̃�1, �̃�2) … 𝐶𝑜𝑣(�̃�1, �̃�𝑛)

𝐶𝑜𝑣(�̃�2, �̃�1) 𝑉𝑎𝑟(�̃�2) … 𝐶𝑜𝑣(�̃�2, �̃�𝑛)
… … …

𝐶𝑜𝑣(�̃�𝑛, �̃�1) 𝐶𝑜𝑣(�̃�𝑛, �̃�2) 𝑉𝑎𝑟(�̃�𝑛)

] 

 

It is possible to consider a new objective function in the following form.  

𝐹(�̃�) = 𝑘1𝑓 + 𝑘2√𝑣𝑎𝑟(𝑓), where 𝑘1and 𝑘2 are non-negative constants, whose 

values indicate the importance of 𝑓 and the standard deviation of 𝑓in the 

maximization problem. 

𝑖𝑓 𝑘2 = 0 𝑡ℎ𝑒𝑛 𝑓(�̃�) = 𝑓, 𝑖𝑓 𝑘1 = 0 𝑡ℎ𝑒𝑛𝑓(�̃�) = √𝑣𝑎𝑟(𝑓) 

For simplification of notation, we rewrite the second constraint in Model (3.1) as 

follows: 

𝑝[ℎ𝑗 ≤ 0] ≥ 1 − 𝛼, ℎ𝑗 = ∑ 𝑢𝑟𝑑

𝑠

𝑟=1

�̃�𝑟𝑗 − ∑ 𝑣𝑖𝑑

𝑚

𝑖=1

�̃�𝑖𝑗 

As we know  𝑣(ℎ𝑗) = �̃�𝑇𝑣𝑗�̃�in which V is the variance. Therefore: 

Vj = [

𝑉𝑎𝑟(�̌�𝑟1) 𝐶𝑜𝑣(�̃�𝑟1, �̃�𝑟2) … 𝐶𝑜𝑣(�̃�𝑟1, �̃�𝑖𝑑)

𝐶𝑜𝑣(�̃�𝑟2, �̃�𝑟1) 𝑉𝑎𝑟(�̃�𝑟2) … 𝐶𝑜𝑣(�̃�𝑟2, �̃�𝑖𝑑)
… … …

𝐶𝑜𝑣(�̃�𝑖𝑑 , �̃�𝑖1) 𝐶𝑜𝑣(�̃�𝑖𝑑 , �̃�𝑖2) 𝑉𝑎𝑟(�̃�𝑖𝑑)

]   𝑎𝑛𝑑    𝑦 = ⌈

�̃�1

�̃�2…
�̃� 𝑛

⌉ 

Thus: 

𝑉𝑎𝑟(ℎ𝑗) = ∑(𝑢𝑟𝑑
2

𝑠

𝑟=1

𝑉𝑎𝑟(�̃�𝑟𝑗) + ∑ 𝑢𝑟𝑑

𝑠

𝑙=1

𝑢𝑙𝑑𝐶𝑜𝑣(�̃�𝑟𝑗 , �̃�𝑙𝑗)) + ∑(𝑣𝑖𝑑
2

𝑚

𝑖=1

𝑉𝑎𝑟(�̃�𝑖𝑗))

+ ∑ 𝑣𝑖𝑑

𝑚

𝑒=1

𝑣𝑒𝑑𝐶𝑜𝑣(�̃�𝑖𝑗 , �̃�𝑒𝑗)) − 2𝐶𝑜𝑣 (∑ 𝑢𝑟𝑑

𝑠

𝑟=1

�̃�𝑟𝑗 , ∑ 𝑣𝑖𝑑

𝑚

𝑖=1

�̃�𝑖𝑗) 

Consider ℎ𝑗 to be normally distributed, andℎ𝑗~𝑁(ℎ�̅�, 𝑉𝑎𝑟(ℎ𝑗)). According to the 

constraint, we will have: 

𝑝 [
ℎ𝑗−ℎ𝑗̅̅ ̅

√𝑉𝑎𝑟(ℎ𝑗)

≤
−ℎ𝑗

√𝑉𝑎𝑟(ℎ𝑗)
] ≥ 1 − 𝛼 ,      If 𝛷(𝑠𝑗) = 1 − 𝛼 then 𝛷 (

−ℎ𝑗

√𝑉𝑎𝑟(ℎ𝑗)

) ≥

𝛷(𝑠𝑗);      𝑗 = 1 … 𝑛 

According to the above inequality, we may write: 
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(
−ℎ𝑗

√𝑉𝑎𝑟(ℎ𝑗)

) ≥ 𝑠𝑖, Then𝑠𝑗 = 𝛷−1(1 − 𝛼)or equivalentlyℎ�̅� + 𝑠𝑗√𝑉𝑎𝑟(ℎ𝑗) ≤ 0    𝑗 =

1 … 𝑛, 𝑥𝑗 ≥ 0. This leads toℎ�̅� + 𝛷−1(1 − 𝛼)√𝑉𝑎𝑟(ℎ𝑗) ≤ 0.  
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